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Overview

 data.table in a nutshell (10 mins)
 Q & A. Our backgrounds (10 mins)
 Main features in more detail (30 mins)
 Q & A (10 mins)

Every question is a good question!

 Please complete feedback form at the end of 
the conference
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What is data.table?

 Think data.frame, inherits from it

 data.table() and ?data.table

Goals:
 Reduce programming time

fewer function calls, less variable name repetition

 Reduce compute time 
fast aggregation, update by reference

 In-memory only, 64bit and 8GB+ routine
 Useful in finance but wider use in mind, too

           e.g. genomics
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Reducing programming time

trades[

  filledShares < orderedShares,

  sum( (orderedShares-filledShares)  
       * orderPrice / fx ),

  by = "date,region,algo"

]

R : i  j   by

SQL : WHERE  SELECT   GROUP BY
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Reducing compute time

e.g. 10 million rows  x  3 columns x,y,v     230MB

DF[DF$x=="R" & DF$y==123,]  # 8    s

DT[.("R",123)]              # 0.008s

tapply(DF$v,DF$x,sum)       # 22   s

DT[,sum(v),by=x]            #  0.83s

See above in timings vignette (copy and paste)
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Fast and friendly file reading

e.g. 50MB .csv, 1 million rows x 6 columns

read.csv("test.csv")        # 30-60s

read.csv("test.csv", colClasses=,    
         nrows=, etc...)    #    10s

fread("test.csv")           #     3s

e.g. 20GB .csv, 200 million rows x 16 columns

read.csv( ” big.csv ” , ...)    #  hours

fread("big.csv")            #     8m 
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Update by reference using :=

Add new column ”sectorMCAP” by group :

DT[,sectorMCAP:=sum(MCAP),by=Sector] 

Delete a column (0.00s even on 20GB table) :

DT[,colToDelete:=NULL]

Be explicit to really copy entire 20GB :

DT2 = copy(DT)
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Why R?

1) R's lazy evaluation enables the syntax :
 DT[ filledShares < orderedShares ]
 query optimization before evaluation

2) Pass DT to any package taking DF. It works.       
  is.data.frame(DT) == TRUE

3) CRAN (cross platform release, quality control)

4) Thousands of statistical packages to use with   
  data.table
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Q & A

 My background

 Your background; e.g.
 Bank, asset management, other?
 Research, trading, risk, all, other?
 Equity, futures, other?
 Low frequency, high frequency?
 How long using R, SQL, data.table?
 Question?



10

Essential!

 Given a 10,000 x 10,000 matrix in any 
language

 Sum the rows
 Sum the columns
 Is one way faster, and why?
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setkey(DT, colA, colB)

 Sorts the table by colA then colB.  That's all.
 Like a telephone number directory: last name 

then first name
 X[Y] is just binary search to X's key
 You DO need a key for joins X[Y]
 You DO NOT need a key for by=  (but many 

examples online include it)
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Joins: X[Y]

 Vector search vs binary search
 One column == is ok,  but not 2+ (see example 

above)
 J(), .(), list(), data.table()
 CJ()
 SJ()
 nomatch
 mult
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”Cold” by (i.e. without setkey)

Consecutive calls unrelated to key are fine and 
common practice :

> DT[, sum(v), by="x,y"]

> DT[, sum(v), by="z"]

> DT[, sum(v), by=colA%%5]

Also known as "ad hoc by"



14

DT[i, j, by]

 Out loud: ”Take DT, subset rows using i, then 
calculate j grouped by by”

 Once you grok the above reading, you don't 
need to memorize any other functions as all 
operations follow the same intuition as base.
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Stack Overflow 4 days ago
 June 2012
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data.table answer

NB: It isn't just the speed, but the simplicity. It's easy to 
write and easy to read.
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User's reaction

”Holy fudge buckets!!! data.table is awesome! 
That took about 3 seconds for the whole 
thing!!!”

”I think that congratulations are well in order 
for the frankly amazingly well written quick 
start guide and FAQ. Seriously.”

Davy Kavanagh, 15 Jun 2012
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but ...

 Example had by=key(dt) ?

 Yes, but it didn't need to.

 If the data is very large (1GB+) and the groups 
are big too then getting the groups together in 
memory can speed up a bit (cache efficiency).
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DT[,,by=] -vs- DT[,,keyby=]

 by preserves order of groups (by order of first 
appearance)

 Both preserve order of rows within groups 
(important!) and unlike SQL 

 keyby is a by as usual, followed by 
setkeyv(DT,by)
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Prevailing join (roll=TRUE)

 One reason for setkey's design.
 Last Observation (the prevailing one) Carried 

Forward (LOCF), efficiently
 Roll forwards or backward
 Roll the last observation forwards, or not
 Roll the first observation backwards, or not
 Limit the roll; e.g. 30 days (roll = 30)
 Join to nearest value (roll = ”nearest”)
 i.e. ordered joins
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Variable name repetition

 The 3rd highest voted [R] question (of 43k)

How to sort a dataframe by column(s) in R  (*)
 DF[with(DF, order(-z, b)), ]                                  

- vs -                                                     
DT[ order(-z, b) ]

 quarterlyreport[with(lastquarterlyreport,order(-
z,b)),]                                                                   
- vs -                                              
quarterlyreport[ order(-z, b) ]

(*) Click link for more information

Silent incorrect results due to using a similar variable by 
mistake. Easily done when this appears on a page of code.

http://stackoverflow.com/a/10758086/403310
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but ...

 Yes order() is slow when used in i because 
that's base R's order().

 That's where ”optimization before evaluation” 
comes in.  We now auto convert order() to the 
internal forder() so you don't have to know.

 Available in v1.9.3 on R-Forge, soon on CRAN
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split-apply-combine

Why ”split” 10GB into many small groups???

Since 2010, data.table :
 Allocates memory for largest group
 Reuses that same memory for all groups
 Allocates result data.table up front
 Implemented in C
 eval() of j within each group
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Recent innovations

 Instead of the eval(j) from C,  dplyr converts to 
an Rcpp function and calls that from C. 
Skipping the R eval step.

 In response, data.table now has GForce:  one 
function call that computes the aggregate 
across groups.  Called once only so no need to 
speed up many calls!

 Both approaches limited to simple aggregates: 
sum, mean, sd, etc.  But often that's all that's 
needed.
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data.table over-allocates
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:=  and `:=`()

DT[col1==something, col2:=col3+1]

DT[, `:=`(newCol1=mean(colA),

          newCol2=sd(colA)),

      by=sector]
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set*  functions

     set()
   setattr()
   setnames()
   setcolorder()
   setkey()
   setkeyv()
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All options

datatable.verbose                   FALSE 

datatable.nomatch             NA_integer_

datatable.optimize                    Inf

datatable.print.nrows                100L

datatable.print.topn                   5L

datatable.allow.cartesian           FALSE

datatable.alloccol  quote(max(100L,ncol(DT)+64L))

datatable.integer64            ” integer64”
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All symbols

 .N
 .SD
 .I
 .BY
 .GRP
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.SD

stocks[, head(.SD,2), by=sector]

stocks[, lapply(.SD, sum), by=sector]

stocks[, lapply(.SD, sum), by=sector, 
.SDcols=c("mcap",paste0(revenueFQ",1:8))]
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.I
if (length(err <- allocation[,                 
              if(length(unique(Price))>1) .I,  
              by=stock ]$V1 )) {

  warning("Fills allocated to different 
accounts at different prices! Investigate.")

  print(allocation[err])

} else {

  cat("Ok   All fills allocated to each 
account at same price\n")

} 
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Analogous to SQL

  DT[ where,

      select | update,

      group by ]

    [ having ]

    [ order by ]

    [ i, j, by ] ... [ i, j, by ]
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New in v1.9.2 on CRAN

 37 new features and 43 bug fixes
 set() can now add columns just like :=
 .SDcols “de-select” columns by name or 

position; e.g.,
DT[,lapply(.SD,mean),by=colA,.SDcols=-c(3,4)]

 fread() a subset of columns
 fread() commands; e.g.,
fread("grep blah file.txt")

 Speed gains
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Radix sort for integer

 R's method=”radix” is not actually a radix sort 
… it's a counting sort.  See ?setkey/Notes.

 data.table liked and used it, though.
 A true radix sort caters for range > 100,000
 ( Negatives was a one line change to R we 

suggested and was accepted in R 3.1 )
 Adapted to integer from Terdiman and Herf's 

code for float …
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Radix sort for numeric

 R reminder: numeric == floating point numbers

 Radix Sort Revisited, Pierre Terdiman, 2000

http://codercorner.com/RadixSortRevisited.htm

 Radix Tricks, Michael Herf, 2001

http://stereopsis.com/radix.html

 Their C code now in data.table with minor 
changes; e.g., NA/NaN and 6-pass for double

http://codercorner.com/RadixSortRevisited.htm
http://stereopsis.com/radix.html
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Faster for those cases

20 million rows x 4 columns,  539MB

a & b (numeric), c (integer), d (character)

v1.8.10      v1.8.11

setkey(DT, a) 54.9s   7.2s

setkey(DT, c) 48.0s   7.0s

setkey(DT, a, b)   102.3s 16.9s

”Cold” grouping (no setkey first) :

DT[, mean(b), by=c]      47.0s              8.7s

https://gist.github.com/arunsrinivasan/7997273

https://gist.github.com/arunsrinivasan/7997273
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New feature: melt/cast

i.e. reshape2 for data.table

20 million rows x 6 columns (a:f)      768MB

melt(DF, id=”d”, measure=1:2)      191 sec

melt(DT, id=“d”, measure=1:2)          3 sec

dcast(DF, d~e, ..., fun=sum)           184 sec

dcast(DT, d~e, …, fun=sum)             28 sec

https://gist.github.com/arunsrinivasan/7839891

Similar to melt_ in Kmisc by Kevin Ushey

https://gist.github.com/arunsrinivasan/7839891
http://stackoverflow.com/a/18526870/403310
http://www.stats.bris.ac.uk/R/web/packages/Kmisc/index.html
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… melt/cast continued

Q: Why not submit a pull request to reshape2 ?

A: This C implementation calls data.table internals 
at C-level (e.g. fastorder, grouping, and joins). It 
makes sense for this code to be together.
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Miscellaneous

DT[, (myvar):=NULL]

Space and specials; e.g., by="a, b, c"

DT[4:7,newCol:=8][]
 extra [] to print at prompt

 auto fills rows 1:3 with NA
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53 examples in :

example(data.table)
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Thank you

http://datatable.r-forge.r-project.org/

http://stackoverflow.com/questions/tagged/data.table

> install.packages(”data.table”)

> require(data.table)

> ?data.table

> ?fread

Learn by example :

> example(data.table)

http://datatable.r-forge.r-project.org/
http://stackoverflow.com/questions/tagged/data.table
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