
One hour tutorial

data.table

R/Finance Chicago, May 2014

Matt Dowle

2

Overview

 data.table in a nutshell (10 mins)
 Q & A. Our backgrounds (10 mins)
 Main features in more detail (30 mins)
 Q & A (10 mins)

Every question is a good question!

 Please complete feedback form at the end of
the conference

3

What is data.table?

 Think data.frame, inherits from it

 data.table() and ?data.table

Goals:
 Reduce programming time

fewer function calls, less variable name repetition

 Reduce compute time
fast aggregation, update by reference

 In-memory only, 64bit and 8GB+ routine
 Useful in finance but wider use in mind, too

 e.g. genomics

4

Reducing programming time

trades[

 filledShares < orderedShares,

 sum((orderedShares-filledShares)
 * orderPrice / fx),

 by = "date,region,algo"

]

R : i j by

SQL : WHERE SELECT GROUP BY

5

Reducing compute time

e.g. 10 million rows x 3 columns x,y,v 230MB

DF[DF$x=="R" & DF$y==123,] # 8 s

DT[.("R",123)] # 0.008s

tapply(DFv,DFx,sum) # 22 s

DT[,sum(v),by=x] # 0.83s

See above in timings vignette (copy and paste)

6

Fast and friendly file reading

e.g. 50MB .csv, 1 million rows x 6 columns

read.csv("test.csv") # 30-60s

read.csv("test.csv", colClasses=,
 nrows=, etc...) # 10s

fread("test.csv") # 3s

e.g. 20GB .csv, 200 million rows x 16 columns

read.csv(” big.csv ” , ...) # hours

fread("big.csv") # 8m

7

Update by reference using :=

Add new column ”sectorMCAP” by group :

DT[,sectorMCAP:=sum(MCAP),by=Sector]

Delete a column (0.00s even on 20GB table) :

DT[,colToDelete:=NULL]

Be explicit to really copy entire 20GB :

DT2 = copy(DT)

8

Why R?

1) R's lazy evaluation enables the syntax :
 DT[filledShares < orderedShares]
 query optimization before evaluation

2) Pass DT to any package taking DF. It works.
 is.data.frame(DT) == TRUE

3) CRAN (cross platform release, quality control)

4) Thousands of statistical packages to use with
 data.table

9

Q & A

 My background

 Your background; e.g.
 Bank, asset management, other?
 Research, trading, risk, all, other?
 Equity, futures, other?
 Low frequency, high frequency?
 How long using R, SQL, data.table?
 Question?

10

Essential!

 Given a 10,000 x 10,000 matrix in any
language

 Sum the rows
 Sum the columns
 Is one way faster, and why?

11

setkey(DT, colA, colB)

 Sorts the table by colA then colB. That's all.
 Like a telephone number directory: last name

then first name
 X[Y] is just binary search to X's key
 You DO need a key for joins X[Y]
 You DO NOT need a key for by= (but many

examples online include it)

12

Joins: X[Y]

 Vector search vs binary search
 One column == is ok, but not 2+ (see example

above)
 J(), .(), list(), data.table()
 CJ()
 SJ()
 nomatch
 mult

13

”Cold” by (i.e. without setkey)

Consecutive calls unrelated to key are fine and
common practice :

> DT[, sum(v), by="x,y"]

> DT[, sum(v), by="z"]

> DT[, sum(v), by=colA%%5]

Also known as "ad hoc by"

14

DT[i, j, by]

 Out loud: ”Take DT, subset rows using i, then
calculate j grouped by by”

 Once you grok the above reading, you don't
need to memorize any other functions as all
operations follow the same intuition as base.

15

Stack Overflow 4 days ago
 June 2012

16

data.table answer

NB: It isn't just the speed, but the simplicity. It's easy to
write and easy to read.

17

User's reaction

”Holy fudge buckets!!! data.table is awesome!
That took about 3 seconds for the whole
thing!!!”

”I think that congratulations are well in order
for the frankly amazingly well written quick
start guide and FAQ. Seriously.”

Davy Kavanagh, 15 Jun 2012

18

but ...

 Example had by=key(dt) ?

 Yes, but it didn't need to.

 If the data is very large (1GB+) and the groups
are big too then getting the groups together in
memory can speed up a bit (cache efficiency).

19

DT[,,by=] -vs- DT[,,keyby=]

 by preserves order of groups (by order of first
appearance)

 Both preserve order of rows within groups
(important!) and unlike SQL

 keyby is a by as usual, followed by
setkeyv(DT,by)

20

Prevailing join (roll=TRUE)

 One reason for setkey's design.
 Last Observation (the prevailing one) Carried

Forward (LOCF), efficiently
 Roll forwards or backward
 Roll the last observation forwards, or not
 Roll the first observation backwards, or not
 Limit the roll; e.g. 30 days (roll = 30)
 Join to nearest value (roll = ”nearest”)
 i.e. ordered joins

21

Variable name repetition

 The 3rd highest voted [R] question (of 43k)

How to sort a dataframe by column(s) in R (*)
 DF[with(DF, order(-z, b)),]

- vs -
DT[order(-z, b)]

 quarterlyreport[with(lastquarterlyreport,order(-
z,b)),]
- vs -
quarterlyreport[order(-z, b)]

(*) Click link for more information

Silent incorrect results due to using a similar variable by
mistake. Easily done when this appears on a page of code.

http://stackoverflow.com/a/10758086/403310

22

but ...

 Yes order() is slow when used in i because
that's base R's order().

 That's where ”optimization before evaluation”
comes in. We now auto convert order() to the
internal forder() so you don't have to know.

 Available in v1.9.3 on R-Forge, soon on CRAN

23

split-apply-combine

Why ”split” 10GB into many small groups???

Since 2010, data.table :
 Allocates memory for largest group
 Reuses that same memory for all groups
 Allocates result data.table up front
 Implemented in C
 eval() of j within each group

24

Recent innovations

 Instead of the eval(j) from C, dplyr converts to
an Rcpp function and calls that from C.
Skipping the R eval step.

 In response, data.table now has GForce: one
function call that computes the aggregate
across groups. Called once only so no need to
speed up many calls!

 Both approaches limited to simple aggregates:
sum, mean, sd, etc. But often that's all that's
needed.

25

data.table over-allocates

26

:= and `:=`()

DT[col1==something, col2:=col3+1]

DT[, `:=`(newCol1=mean(colA),

 newCol2=sd(colA)),

 by=sector]

27

set* functions

 set()
 setattr()
 setnames()
 setcolorder()
 setkey()
 setkeyv()

28

All options

datatable.verbose FALSE

datatable.nomatch NA_integer_

datatable.optimize Inf

datatable.print.nrows 100L

datatable.print.topn 5L

datatable.allow.cartesian FALSE

datatable.alloccol quote(max(100L,ncol(DT)+64L))

datatable.integer64 ” integer64”

29

All symbols

 .N
 .SD
 .I
 .BY
 .GRP

30

.SD

stocks[, head(.SD,2), by=sector]

stocks[, lapply(.SD, sum), by=sector]

stocks[, lapply(.SD, sum), by=sector,
.SDcols=c("mcap",paste0(revenueFQ",1:8))]

31

.I
if (length(err <- allocation[,
 if(length(unique(Price))>1) .I,
 by=stock]$V1)) {

 warning("Fills allocated to different
accounts at different prices! Investigate.")

 print(allocation[err])

} else {

 cat("Ok All fills allocated to each
account at same price\n")

}

32

Analogous to SQL

 DT[where,

 select | update,

 group by]

 [having]

 [order by]

 [i, j, by] ... [i, j, by]

33

New in v1.9.2 on CRAN

 37 new features and 43 bug fixes
 set() can now add columns just like :=
 .SDcols “de-select” columns by name or

position; e.g.,
DT[,lapply(.SD,mean),by=colA,.SDcols=-c(3,4)]

 fread() a subset of columns
 fread() commands; e.g.,
fread("grep blah file.txt")

 Speed gains

34

Radix sort for integer

 R's method=”radix” is not actually a radix sort
… it's a counting sort. See ?setkey/Notes.

 data.table liked and used it, though.
 A true radix sort caters for range > 100,000
 (Negatives was a one line change to R we

suggested and was accepted in R 3.1)
 Adapted to integer from Terdiman and Herf's

code for float …

35

Radix sort for numeric

 R reminder: numeric == floating point numbers

 Radix Sort Revisited, Pierre Terdiman, 2000

http://codercorner.com/RadixSortRevisited.htm

 Radix Tricks, Michael Herf, 2001

http://stereopsis.com/radix.html

 Their C code now in data.table with minor
changes; e.g., NA/NaN and 6-pass for double

http://codercorner.com/RadixSortRevisited.htm
http://stereopsis.com/radix.html

36

Faster for those cases

20 million rows x 4 columns, 539MB

a & b (numeric), c (integer), d (character)

v1.8.10 v1.8.11

setkey(DT, a) 54.9s 7.2s

setkey(DT, c) 48.0s 7.0s

setkey(DT, a, b) 102.3s 16.9s

”Cold” grouping (no setkey first) :

DT[, mean(b), by=c] 47.0s 8.7s

https://gist.github.com/arunsrinivasan/7997273

https://gist.github.com/arunsrinivasan/7997273

37

New feature: melt/cast

i.e. reshape2 for data.table

20 million rows x 6 columns (a:f) 768MB

melt(DF, id=”d”, measure=1:2) 191 sec

melt(DT, id=“d”, measure=1:2) 3 sec

dcast(DF, d~e, ..., fun=sum) 184 sec

dcast(DT, d~e, …, fun=sum) 28 sec

https://gist.github.com/arunsrinivasan/7839891

Similar to melt_ in Kmisc by Kevin Ushey

https://gist.github.com/arunsrinivasan/7839891
http://stackoverflow.com/a/18526870/403310
http://www.stats.bris.ac.uk/R/web/packages/Kmisc/index.html

38

… melt/cast continued

Q: Why not submit a pull request to reshape2 ?

A: This C implementation calls data.table internals
at C-level (e.g. fastorder, grouping, and joins). It
makes sense for this code to be together.

39

Miscellaneous

DT[, (myvar):=NULL]

Space and specials; e.g., by="a, b, c"

DT[4:7,newCol:=8][]
 extra [] to print at prompt

 auto fills rows 1:3 with NA

40

53 examples in :

example(data.table)

41

Thank you

http://datatable.r-forge.r-project.org/

http://stackoverflow.com/questions/tagged/data.table

> install.packages(”data.table”)

> require(data.table)

> ?data.table

> ?fread

Learn by example :

> example(data.table)

http://datatable.r-forge.r-project.org/
http://stackoverflow.com/questions/tagged/data.table

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

