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The first section, Beginner FAQs, is intended to be read in order, from start to finish. It may
be read before reading the 10 minute introduction to data.table vignette.
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1 Beginner FAQs

1.1 Why does DT[,5] return 5?

Because, by default, unlike a data.frame, the 2nd argument is an expression which is evaluated
within the scope of DT. 5 evaluates to 5. It is generally bad practice to refer to columns by number
rather than name. If someone else comes along and reads your code later, they may have to hunt
around to find out which column is number 5. Furthermore, if you or someone else changes the
column ordering of DT higher up in your R program, you might get bugs if you forget to change all
the places in your code which refer to column number 5.

Say column 5 is called ”region”, just do DT[,region] instead. Notice there are no quotes around
the column name. This is what we mean by j being evaluated within the scope of the data.table.
That scope consists of an environment where the column names are variables.

You can write any R expression in the j; e.g., DT[,colA*colB/2]. Further, j may be a list()

of many R expressions, including calls to any R package; e.g., DT[,fitdistr(d1-d1,"normal")].
Having said this, there are some circumstances where referring to a column by number is ok,

such as a sequence of columns. In these situations just do DT[,5:10,with=FALSE] or
DT[,c(1,4,10),with=FALSE]. See ?data.table for an explanation of the with argument.

Note that with() has been a base function for a long time. That’s one reason we say data.table

builds upon base functionality. There is little new here really, data.table is just making use of
with() and building it into the syntax.

1.2 Why does DT[,"region"] return "region"?

See answer to 1.1 above. Try DT[,region] instead. Or DT[,"region",with=FALSE].

1.3 Why does DT[,region] return a vector? I’d like a 1-column data.table.
There is no drop argument like I’m used to in data.frame.

Try DT[,list(region)] instead.

1.4 Why does DT[,x,y,z] not work? I wanted the 3 columns x,y and z.

The j expression is the 2nd argument. The correct way to do this is DT[,list(x,y,z)].

1.5 I assigned a variable mycol="x" but then DT[,mycol] returns "x". How
do I get it to look up the column name contained in the mycol

variable?

This is what we mean when we say the j expression ’sees’ objects in the calling scope. The
variable mycol does not exist as a column name of DT so R then looked in the calling scope and
found mycol there, and returned its value "x". This is correct behaviour. Had mycol been a
column name, then that column’s data would have been returned. What you probably meant was
DT[,mycol,with=FALSE], which will return the x column’s data as you wanted. Alternatively,
since a data.table is a list, too, you can write DT[["x"]] or DT[[mycol]].

1.6 Ok but I don’t know the expressions in advance. How do I progra-
matically pass them in?

To create expressions use the quote() function. We refer to these as quote()-ed expressions to save
confusion with the double quotes used to create a character vector such as c("x"). The simplest
quote()-ed expression is just one column name :

q = quote(x)

DT[,eval(q)] # returns the column x as a vector

q = quote(list(x))
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DT[,eval(q)] # returns the column x as a 1-column data.table

Since these are expressions, we are not restricted to column names only :
q = quote(mean(x))

DT[,eval(q)] # identical to DT[,mean(x)]

q = quote(list(x,sd(y),mean(y*z)))

DT[,eval(q)] # identical to DT[,list(x,sd(y),mean(y*z))]

However, if it’s just simply a vector of column names you need, it may be simpler to pass a character
vector to j and use with=FALSE.

To pass an expression into your own function, one idiom is as follows :

> DT = as.data.table(iris)

> setkey(DT,Species)

> myfunction = function(dt, expr) {

+ e = substitute(expr)

+ dt[,eval(e),by=Species]

+ }

> myfunction(DT,sum(Sepal.Width))

Species V1

1: setosa 171.4

2: versicolor 138.5

3: virginica 148.7

1.7 This is really hard. What’s the point?

j doesn’t have to be just column names. You can write any R expression of column names directly
as the j; e.g., DT[,mean(x*y/z)]. The same applies to i; e.g., DT[x>1000, sum(y*z)]. This runs
the j expression on the set of rows where the i expression is true. You don’t even need to return
data; e.g., DT[x>1000, plot(y,z)]. When we get to compound table joins we will see how i and
j can themselves be other data.table queries. We are going to stretch i and j much further than
this, but to get there we need you on board first with FAQs 1.1-1.6.

1.8 OK, I’m starting to see what data.table is about, but why didn’t
you enhance data.frame in R? Why does it have to be a new package?

As FAQ 1.1 highlights, j in [.data.table is fundamentally different from j in [.data.frame.
Even something as simple as DF[,1] would break existing code in many packages and user code.
This is by design, and we want it to work this way for more complicated syntax to work. There
are other differences, too (see FAQ 2.17).

Furthermore, data.table inherits from data.frame. It is a data.frame, too. A data.table

can be passed to any package that only accepts data.frame and that package can use [.data.frame
syntax on the data.table.

We have proposed enhancements to R wherever possible, too. One of these was accepted as a
new feature in R 2.12.0 :

unique() and match() are now faster on character vectors where all elements are in
the global CHARSXP cache and have unmarked encoding (ASCII). Thanks to Matthew
Dowle for suggesting improvements to the way the hash code is generated in unique.c.

A second proposal was to use memcpy in duplicate.c, which is much faster than a for loop in C.
This would improve the way that R copies data internally (on some measures by 13 times). The
thread on r-devel is here : http://tolstoy.newcastle.edu.au/R/e10/devel/10/04/0148.html.

1.9 Why are the defaults the way they are? Why does it work the way
it does?

The simple answer is because the author designed it for his own use, and he wanted it that way.
He finds it a more natural, faster way to write code, which also executes more quickly.
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1.10 Isn’t this already done by with() and subset() in base?

Some of the features discussed so far are, yes. The package builds upon base functionality. It
does the same sorts of things but with less code required, and executes many times faster if used
correctly.

1.11 Why does X[Y] return all the columns from Y too? Shouldn’t it
return a subset of X?

This was changed in v1.5.3. X[Y] now includes Y’s non-join columns. We refer to this feature as
join inherited scope because not only are X columns available to the j expression, so are Y columns.
The downside is that X[Y] is less efficient since every item of Y’s non-join columns are duplicated to
match the (likely large) number of rows in X that match. We therefore strongly encourage X[Y,j]

instead of X[Y]. See next FAQ.

1.12 What is the difference between X[Y] and merge(X,Y)?

X[Y] is a join, looking up X’s rows using Y (or Y’s key if it has one) as an index.
Y[X] is a join, looking up Y’s rows using X (or X’s key if it has one) as an index.
merge(X,Y)1 does both ways at the same time. The number of rows of X[Y] and Y[X] usually
differ; whereas the number of rows returned by merge(X,Y) and merge(Y,X) is the same.

BUT that misses the main point. Most tasks require something to be done on the data after a
join or merge. Why merge all the columns of data, only to use a small subset of them afterwards?
You may suggest merge(X[,ColsNeeded1],Y[,ColsNeeded2]), but that takes copies of the sub-
sets of data, and it requires the programmer to work out which columns are needed. X[Y,j] in
data.table does all that in one step for you. When you write X[Y,sum(foo*bar)], data.table
automatically inspects the j expression to see which columns it uses. It will only subset those
columns only; the others are ignored. Memory is only created for the columns the j uses, and Y

columns enjoy standard R recycling rules within the context of each group. Let’s say foo is in X,
and bar is in Y (along with 20 other columns in Y). Isn’t X[Y,sum(foo*bar)] quicker to program
and quicker to run than a merge followed by a subset?

1.13 Anything else about X[Y,sum(foo*bar)]?

Remember that j (in this example sum(foo*bar)) is run for each group of X that each row of Y
matches to. This feature is grouping by i or by without by. For example, and making it complicated
by using join inherited scope, too :

> X = data.table(grp=c("a","a","b","b","b","c","c"), foo=1:7)

> setkey(X,grp)

> Y = data.table(c("b","c"), bar=c(4,2))

> X

grp foo

1: a 1

2: a 2

3: b 3

4: b 4

5: b 5

6: c 6

7: c 7

> Y

1Here we mean either the merge method for data.table or the merge method for data.frame since both methods
work in the same way in this respect. See ?merge.data.table and FAQ 2.24 for more information about method
dispatch.
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V1 bar

1: b 4

2: c 2

> X[Y,sum(foo*bar)]

grp V1

1: b 48

2: c 26

1.14 That’s nice but what if I really do want to evaluate j for all rows
once, not by group?

If you really want j to run once for the whole subset of X then try X[Y][,sum(foo*bar)]. If that
needs to be efficient (recall that X[Y] joins all columns) then you will have to work a little harder
since this is outside the common use-case: X[Y,list(foo,bar)][,sum(foo*bar)].

2 General syntax

2.1 How can I avoid writing a really long j expression? You’ve said I
should use the column names, but I’ve got a lot of columns.

When grouping, the j expression can use column names as variables, as you know, but it can also
use a reserved symbol .SD which refers to the Subset of the Data.table for each group (excluding
the grouping columns). So to sum up all your columns it’s just DT[,lapply(.SD,sum),by=grp]. It
might seem tricky, but it’s fast to write and fast to run. Notice you don’t have to create an anony-
mous function. See the timing vignette and wiki for comparison to other methods. The .SD object
is efficiently implemented internally and more efficient than passing an argument to a function. But
if the .SD symbol appears in j then data.table has to populate .SD fully for each group even if
j doesn’t use all of it. So please don’t do this, for example, DT[,sum(.SD[["sales"]]),by=grp].
That works but is inefficient and inelegant. This is what was intended: DT[,sum(sales),by=grp]
and could be 100’s of times faster. If you do use all the data in .SD for each group (such as in
DT[,lapply(.SD,sum),by=grp]) then that’s very good usage of .SD. Also see ?data.table for
the .SDcols argument.

2.2 Why is the default for mult now "all"?

In v1.5.3 the default was changed to "all". When i (or i’s key if it has one) has fewer columns
than x’s key, mult was already set to "all" automatically. Changing the default makes this clearer
and easier for users as it came up quite often.

In versions up to v1.3, "all" was slower. Internally, "all" was implemented by joining using
"first", then again from scratch using "last", after which a diff between them was performed to
work out the span of the matches in x for each row in i. Most often we join to single rows, though,
where "first","last" and "all" return the same result. We preferred maximum performance for
the majority of situations so the default chosen was "first". When working with a non-unique
key (generally a single column containing a grouping variable), DT["A"] returned the first row of
that group so DT["A",mult="all"] was needed to return all the rows in that group.

In v1.4 the binary search in C was changed to branch at the deepest level to find first and last.
That branch will likely occur within the same final pages of RAM so there should no longer be a
speed disadvantage in defaulting mult to "all". We warned that the default might change, and
made the change in v1.5.3.

A future version of data.table may allow a distinction between a key and a unique key.
Internally mult="all" would perform more like mult="first" when all x’s key columns were
joined to and x’s key was a unique key. data.table would need checks on insert and update to
make sure a unique key is maintained. An advantage of specifying a unique key would be that
data.table would ensure no duplicates could be inserted, in addition to performance.
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2.3 I’m using c() in the j and getting strange results.

This is a common source of confusion. In data.frame you are used to, for example:

> DF = data.frame(x=1:3,y=4:6,z=7:9)

> DF

x y z

1 1 4 7

2 2 5 8

3 3 6 9

> DF[,c("y","z")]

y z

1 4 7

2 5 8

3 6 9

which returns the two columns. In data.table you know you can use the column names directly
and might try :

> DT = data.table(DF)

> DT[,c(y,z)]

[1] 4 5 6 7 8 9

but this returns one vector. Remember that the j expression is evaluated within the environment
of DT, and c() returns a vector. If 2 or more columns are required, use list() instead:

> DT[,list(y,z)]

y z

1: 4 7

2: 5 8

3: 6 9

c() can be useful in a data.table too, but its behaviour is different from that in [.data.frame.

2.4 I have built up a complex table with many columns. I want to use it
as a template for a new table; i.e., create a new table with no rows,
but with the column names and types copied from my table. Can I
do that easily?

Yes. If your complex table is called DT, try NEWDT = DT[0].

2.5 Is a null data.table the same as DT[0]?

No. By ”null data.table” we mean the result of data.table(NULL) or as.data.table(NULL); i.e.,

> data.table(NULL)

Null data.table (0 rows and 0 cols)

> data.frame(NULL)

data frame with 0 columns and 0 rows

> as.data.table(NULL)

Null data.table (0 rows and 0 cols)
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> as.data.frame(NULL)

data frame with 0 columns and 0 rows

> is.null(data.table(NULL))

[1] FALSE

> is.null(data.frame(NULL))

[1] FALSE

The null data.table|frame is NULL with some attributes attached, making it not NULL anymore.
In R only pure NULL is NULL as tested by is.null(). When referring to the ”null data.table” we
use lower case null to help distinguish from upper case NULL. To test for the null data.table, use
length(DT)==0 or ncol(DT)==0 (length is slightly faster as it’s a primitive function). An empty
data.table (DT[0]) has one or more columns, all of which are empty. Those empty columns still
have names and types.

> DT = data.table(a=1:3,b=c(4,5,6),d=c(7L,8L,9L))

> DT[0]

Empty data.table (0 rows) of 3 cols: a,b,d

> sapply(DT[0],class)

a b d

"integer" "numeric" "integer"

2.6 Why has the DT() alias been removed?

DT was introduced originally as a wrapper for a list of j expressions. Since DT was an alias for
data.table, this was a convenient way to take care of silent recycling in cases where each item of
the j list evaluated to different lengths. The alias was one reason grouping was slow, though. As
of v1.3, list() should be passed instead to the j argument. list() is a primitive and is much
faster, especially when there are many groups. Internally, this was a nontrivial change. Vector
recycling is now done internally, along with several other speed enhancements for grouping.

2.7 But my code uses j=DT(...) and it works. The previous FAQ says
that DT() has been removed.

Then you are using a version prior to 1.5.3. Prior to 1.5.3 [.data.table detected use of DT()
in the j and automatically replaced it with a call to list(). This was to help the transition for
existing users.

2.8 What are the scoping rules for j expressions?

Think of the subset as an environment where all the column names are variables. When a variable
foo is used in the j of a query such as X[Y,sum(foo)], foo is looked for in the following order :

1. The scope of X’s subset; i.e., X’s column names.

2. The scope of each row of Y; i.e., Y’s column names (join inherited scope)

3. The scope of the calling frame; e.g., the line that appears before the data.table query.

4. Exercise for reader: does it then ripple up the calling frames, or go straight to globalenv()?

5. The global environment
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This is lexical scoping as explained in R FAQ 3.3.1. The environment in which the function was
created is not relevant, though, because there is no function. No anonymous function is passed to
the j. Instead, an anonymous body is passed to the j; for example,

> DT = data.table(x=rep(c("a","b"),c(2,3)),y=1:5)

> DT

x y

1: a 1

2: a 2

3: b 3

4: b 4

5: b 5

> DT[,{z=sum(y);z+3},by=x]

x V1

1: a 6

2: b 15

Some programming languages call this a lambda.

2.9 Can I trace the j expression as it runs through the groups?

Try something like this:

> DT[,{

+ cat("Objects:",paste(objects(),collapse=","),"\n")

+ cat("Trace: x=",as.character(x)," y=",y,"\n")

+ sum(y)

+ },by=x]

Objects: Cfastmean,mean,print,x,y

Trace: x= a y= 1 2

Objects: Cfastmean,mean,print,x,y

Trace: x= b y= 3 4 5

x V1

1: a 3

2: b 12

2.10 Inside each group, why is the group variable a long vector contain-
ing the same value repeated?

Please upgrade to v1.6.1, or later; this is no longer true. In the previous FAQ, x is a grouping
variable and now has length 1 for efficiency and convenience. Prior to v1.6.1, x repeated the group
value to match the number of rows in that group. There is no longer any difference between the
following two statements.

> DT[,list(g=1,h=2,i=3,j=4,repeatgroupname=x,sum(y)),by=x]

x g h i j repeatgroupname V6

1: a 1 2 3 4 a 3

2: b 1 2 3 4 b 12

> DT[,list(g=1,h=2,i=3,j=4,repeatgroupname=x[1],sum(y)),by=x]

x g h i j repeatgroupname V6

1: a 1 2 3 4 a 3

2: b 1 2 3 4 b 12

Code written prior to v1.6.1 that uses [1] will still work, but the [1] is no longer necessary.
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2.11 Only the first 10 rows are printed, how do I print more?

There are two things happening here. First, if the number of rows in a data.table are large (> 100

by default), then a summary of the data.table is printed to the console by default. Second, the
summary of a large data.table is printed by takingthe top and bottm n rows of the data.table

and only printing those. Both of these parametes (when to trigger a summary, and how much of
a table to use as a summary) are configurable by R’s options mechanism, or by calling the print

function directly.
For instance, to enforce the summary of a data.table to only happen when a data.table is

greater than 50 rows, you could options(datatable.print.nrows=50). To disable the summary-
by-default completely, you could options(datatable.print.nrows=Inf). You could also call
print directly, as in print(your.data.table, nrows=Inf).

If you want to show more than just the top (and bottom) 10 rows of a data.table summary
(say you like 20), set options(datatable.print.topn=20), for example. Again, you could also
just call print directly, as in print(your.data.table, topn=20)

2.12 With an X[Y] join, what if X contains a column called "Y"?

When i is a single name such as Y it is evaluated in the calling frame. In all other cases such as
calls to J() or other expressions, i is evaluated within the scope of X. This facilitates easy self
joins such as X[J(unique(colA)),mult="first"].

2.13 X[Z[Y]] is failing because X contains a column "Y". I’d like it to use
the table Y in calling scope.

The Z[Y] part is not a single name so that is evaluated within the frame of X and the problem
occurs. Try tmp=Z[Y];X[tmp]. This is robust to X containing a column "tmp" because tmp is a
single name. If you often encounter conflics of this type, one simple solution may be to name all
tables in uppercase and all column names in lowercase, or some similar scheme.

2.14 Can you explain further why data.table is inspired by A[B] syntax
in base?

Consider A[B] syntax using an example matrix A :

> A = matrix(1:12,nrow=4)

> A

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

To obtain cells (1,2)=5 and (3,3)=11 many users (we believe) may try this first :

> A[c(1,3),c(2,3)]

[,1] [,2]

[1,] 5 9

[2,] 7 11

That returns the union of those rows and columns, though. To reference the cells, a 2-column
matrix is required. ?Extract says :

When indexing arrays by [ a single argument i can be a matrix with as many columns
as there are dimensions of x; the result is then a vector with elements corresponding to
the sets of indices in each row of i.
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Let’s try again.

> B = cbind(c(1,3),c(2,3))

> B

[,1] [,2]

[1,] 1 2

[2,] 3 3

> A[B]

[1] 5 11

A matrix is a 2-dimension structure with row names and column names. Can we do the same with
names?

> rownames(A) = letters[1:4]

> colnames(A) = LETTERS[1:3]

> A

A B C

a 1 5 9

b 2 6 10

c 3 7 11

d 4 8 12

> B = cbind(c("a","c"),c("B","C"))

> A[B]

[1] 5 11

So, yes we can. Can we do the same with data.frame?

> A = data.frame(A=1:4,B=letters[11:14],C=pi*1:4)

> rownames(A) = letters[1:4]

> A

A B C

a 1 k 3.141593

b 2 l 6.283185

c 3 m 9.424778

d 4 n 12.566371

> B

[,1] [,2]

[1,] "a" "B"

[2,] "c" "C"

> A[B]

[1] "k" " 9.424778"

But, notice that the result was coerced to character. R coerced A to matrix first so that the syntax
could work, but the result isn’t ideal. Let’s try making B a data.frame.

> B = data.frame(c("a","c"),c("B","C"))

> cat(try(A[B],silent=TRUE))

Error in `[.default`(A, B) : invalid subscript type 'list'
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So we can’t subset a data.frame by a data.frame in base R. What if we want row names and
column names that aren’t character but integer or float? What if we want more than 2 dimensions
of mixed types? Enter data.table.

Furthermore, matrices, especially sparse matrices, are often stored in a 3 column tuple: (i,j,value).
This can be thought of as a key-value pair where i and j form a 2-column key. If we have more
than one value, perhaps of different types it might look like (i,j,val1,val2,val3,...). This looks very
much like a data.frame. Hence data.table extends data.frame so that a data.frame X can be
subset by a data.frame Y, leading to the X[Y] syntax.

2.15 Can base be changed to do this then, rather than a new package?

data.frame is used everywhere and so it is very difficult to make any changes to it. data.table

inherits from data.frame. It is a data.frame, too. A data.table can be passed to any package
that only accepts data.frame. When that package uses [.data.frame syntax on the data.table,
it works. It works because [.data.table looks to see where it was called from. If it was called
from such a package, [.data.table diverts to [.data.frame.

2.16 I’ve heard that data.table syntax is analogous to SQL.

Yes :

� i <==> where

� j <==> select

� := <==> update

� by <==> group by

� i <==> order by (in compound syntax)

� i <==> having (in compound syntax)

� nomatch=NA <==> outer join

� nomatch=0 <==> inner join

� mult="first"|"last" <==> N/A because SQL is inherently unordered

� roll=TRUE <==> N/A because SQL is inherently unordered

The general form is :
DT[where,select|update,group by][having][order by][ ]...[ ]

A key advantage of column vectors in R is that they are ordered, unlike SQL2. We can use or-
dered functions in data.table queries, such as diff(), and we can use any R function from any
package, not just the functions that are defined in SQL. A disadvantage is that R objects must fit in
memory, but with several R packages such as ff, bigmemory, mmap and indexing, this is changing.

2.17 What are the smaller syntax differences between data.frame and
data.table?

� DT[3] refers to the 3rd row, but DF[3] refers to the 3rd column

� DT[3,] == DT[3], but DF[,3] == DF[3] (somewhat confusingly)

� For this reason we say the comma is optional in DT, but not optional in DF

2It may be a surprise to learn that select top 10 * from ... does not reliably return the same rows over time
in SQL. You do need to include an order by clause, or use a clustered index to guarantee row order; i.e., SQL is
inherently unordered.
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� DT[[3]] == DF[3] == DF[[3]]

� DT[i,] where i is a single integer returns a single row, just like DF[i,], but unlike a matrix
single row subset which returns a vector.

� DT[,j,with=FALSE] where j is a single integer returns a one column data.table, unlike
DF[,j] which returns a vector by default

� DT[,"colA",with=FALSE][[1]] == DF[,"colA"].

� DT[,colA] == DF[,"colA"]

� DT[,list(colA)] == DF[,"colA",drop=FALSE]

� DT[NA] returns 1 row of NA, but DF[NA] returns a copy of DF containing NA throughout. The
symbol NA is type logical in R, and is therefore recycled by [.data.frame. Intention was
probably DF[NA_integer_]. [.data.table does this automatically for convenience.

� DT[c(TRUE,NA,FALSE)] treats the NA as FALSE, but DF[c(TRUE,NA,FALSE)] returns NA rows
for each NA

� DT[ColA==ColB] is simpler than DF[!is.na(ColA) & !is.na(ColB) & ColA==ColB,]

� data.frame(list(1:2,"k",1:4)) creates 3 columns, data.table creates one list column.

� check.names is by default TRUE in data.frame but FALSE in data.table, for convenience.

� stringsAsFactors is by default TRUE in data.frame but FALSE in data.table, for efficiency.
Since a global string cache was added to R, characters items are a pointer to the single cached
string and there is no longer a performance benefit of coverting to factor.

� Atomic vectors in list columns are collapsed when printed using ”, ” in data.frame, but ”,”
in data.table with a trailing comma after the 6th item to avoid accidental printing of large
embedded objects.

In [.data.frame we very often set drop=FALSE. When we forget, bugs can arise in edge cases
where single columns are selected and all of a sudden a vector is returned rather than a single
column data.frame. In [.data.table we took the opportunity to make it consistent and drop
drop.

When a data.table is passed to a data.table-unaware package, that package it not concerned
with any of these differences; it just works.

2.18 I’m using j for its side effect only, but I’m still getting data re-
turned. How do I stop that?

In this case j can be wrapped with invisible(); e.g., DT[,invisible(hist(colB)),by=colA]3.

2.19 Why does [.data.table now have a drop argument from v1.5?

So that data.table can inherit from data.frame without using .... If we used ... then invalid
argument names would not be caught.

The drop argument is never used by [.data.table. It is a placeholder for non data.table

aware packages when they use the [.data.frame syntax directly on a data.table.

2.20 Rolling joins are cool, and very fast! Was that hard to program?

The prevailing row on or before the i row is the final row the binary search tests anyway. So
roll=TRUE is essentially just a switch in the binary search C code to return that row.

3hist() returns the breakpoints in addition to plotting to the graphics device
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2.21 Why does DT[i,col:=value] return the whole of DT? I expected
either no visible value (consistent with <-), or a message or return
value containing how many rows were updated. It isn’t obvious
that the data has indeed been updated by reference.

This has changed in v1.8.3 to meet your expectations. Please upgrade. The whole of DT is returned
(now invisibly) so that compound syntax can work; e.g., DT[i,done:=TRUE][,sum(done)]. The
number of rows updated is returned when verbosity is on, either on a per query basis or globally
using options(datatable.verbose=TRUE).

2.22 Ok, thanks. What was so difficult about the result of DT[i,col:=value]
being returned invisibly?

R internally forces visibility on for [. The value of FunTab’s eval column (see src/main/names.c)
for [ is 0 meaning force R_Visible on (see R-Internals section 1.6). Therefore, when we tried
invisible() or setting R_Visible to 0 directly ourselves, eval in src/main/eval.c would force it
on again.

To solve this problem, the key was to stop trying to stop the print method running after a
:=. Instead, inside := we now (from v1.8.3) set a global flag which the print method uses to know
whether to actually print or not.

2.23 I’ve noticed that base::cbind.data.frame (and base::rbind.data.frame)
appear to be changed by data.table. How is this possible? Why?

It is a temporary, last resort solution until we discover a better way to solve the problems listed
below. Essentially, the issue is that data.table inherits from data.frame, and, base::cbind

and base::rbind (uniquely) do their own S3 dispatch internally as documented by ?cbind. The
change is adding one for loop to the start of each function directly in base; e.g.,

> base::cbind.data.frame

function (..., deparse.level = 1)

{

if (!identical(class(..1), "data.frame"))

for (x in list(...)) {

if (inherits(x, "data.table"))

return(data.table::data.table(...))

}

data.frame(..., check.names = FALSE)

}

<environment: namespace:base>

That modification is made dynamically; i.e., the base definition of cbind.data.frame is fetched,
the for loop added to the beginning and then assigned back to base. This solution is intended to
be robust to different definitions of base::cbind.data.frame in different versions of R, including
unknown future changes. Again, it is a last resort until a better solution is known or made available.
The competing requirements are :

� cbind(DT,DF) needs to work. Defining cbind.data.table doesn’t work because base::cbind
does its own S3 dispatch and requires that the first cbind method for each object it is
passed is identical. This is not true in cbind(DT,DF) because the first method for DT is
cbind.data.table but the first method for DF is cbind.data.frame. base::cbind then
falls through to its internal bind code which appears to treat DT as a regular list and returns
very odd looking and unusable matrix output. See FAQ 4.4. We cannot just advise users
not to call cbind(DT,DF) because packages such as ggplot2 make such a call (test 168.5).

� This naturally leads to trying to mask cbind.data.frame instead. Since a data.table is a
data.frame, cbind would find the same method for both DT and DF. However, this doesn’t
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work either because base::cbind appears to find methods in base first; i.e., base::cbind.data.frame
isn’t maskable. This is reproducible as follows :

> foo = data.frame(a=1:3)

> cbind.data.frame = function(...)cat("Not printed\n")

> cbind(foo)

a

1 1

2 2

3 3

� Finally, we tried masking cbind itself (v1.6.5 and v1.6.6). This allowed cbind(DT,DF) to
work, but introduced compatibility issues with package IRanges, since IRanges also masks
cbind. It worked if IRanges was lower on the search() path than data.table, but if IRanges
was higher then data.table’s cbind would never be called and the strange looking matrix
output occurs again (FAQ 4.4).

If you know of a better solution, that still solves all the issues above, then please let us know and
we’ll gladly change it.

2.24 I’ve read about method dispatch (e.g. merge may or may not dis-
patch to merge.data.table) but how does R know how to dispatch?
Are dots significant or special? How on earth does R know which
function to dispatch, and when?

This comes up quite a lot, but it’s really earth shatteringly simple. A function such as merge is
generic if it consists of a call to UseMethod. When you see people talking about whether or not
functions are generic functions they are merely typing the function, without () afterwards, looking
at the program code inside it and if they see a call to UseMethod then it is generic. What does
UseMethod do? It literally slaps the function name together with the class of the first argument,
separated by period (.) and then calls that function, passing along the same arguments. It’s
that simple. For example, merge(X,Y) contains a UseMethod call which means it then dispatches
(i.e. calls) paste("merge",class(X),sep="."). Functions with dots in may or may not be
methods. The dot is irrelevant really. Other than dot being the separator that UseMethod uses.
Knowing this background should now highlight why, for example, it is obvious to R folk that
as.data.table.data.frame is the data.frame method for the as.data.table generic function.
Further, it may help to elucidate that, yes you are correct, it is not obvious from its name alone
that ls.fit is not the fit method of the ls generic function. You only know that by typing ls

(not ls()) and observing it isn’t a single call to UseMethod.
You might now ask: where is this documented in R? Answer: it’s quite clear, but, you need to

first know to look in ?UseMethod, and that help file contains :
”When a function calling UseMethod(’fun’) is applied to an object with class attribute c(’first’,

’second’), the system searches for a function called fun.first and, if it finds it, applies it to the
object. If no such function is found a function called fun.second is tried. If no class name produces
a suitable function, the function fun.default is used, if it exists, or an error results.”

Happily, an internet search for ”How does R method dispatch work” (at the time of writing)
returns the ?UseMethod help page as the top link. Admittedly, other links rapidly descend into
the intracies of S3 vs S4, internal generics and so on.

However, features like basic S3 dispatch (pasting the function name together with the class
name) is why some R folk love R. It’s so simple. No complicated registration or signature is
required. There isn’t much needed to learn. To create the merge method for data.table all that
was required, literally, was to merely create a function called merge.data.table.
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3 Questions relating to compute time

3.1 I have 20 columns and a large number of rows. Why is an expression
of one column so quick?

Several reasons:

� Only that column is grouped, the other 19 are ignored because data.table inspects the j

expression and realises it doesn’t use the other columns.

� One memory allocation is made for the largest group only, then that memory is re-used for
the other groups. There is very little garbage to collect.

� R is an in-memory column store; i.e., the columns are contiguous in RAM. Page fetches from
RAM into L2 cache are minimised.

3.2 I don’t have a key on a large table, but grouping is still really quick.
Why is that?

data.table uses radix sorting. This is significantly faster than other sort algorithms. Radix is
specifically for integers only, see ?base::sort.list(x,method="radix").

This is also one reason why setkey() is quick.
When no key is set, or we group in a different order from that of the key, we call it an ad hoc

by.

3.3 Why is grouping by columns in the key faster than an ad hoc by?

Because each group is contiguous in RAM, thereby minimising page fetches, and memory can be
copied in bulk (memcpy in C) rather than looping in C.

4 Error messages

4.1 Could not find function "DT"

See FAQ 2.6 and FAQ 2.7.

4.2 unused argument(s) (MySum = sum(v))

This error is generated by DT[,MySum=sum(v)]. DT[,list(MySum=sum(v))] was intended, or
DT[,j=list(MySum=sum(v))].

4.3 ’translateCharUTF8’ must be called on a CHARSXP

This error (and similar; e.g., ’getCharCE’ must be called on a CHARSXP) may be nothing do
with character data or locale. Instead, this can be a symptom of an earlier memory corruption.
To date these have been reproducible and fixed (quickly). Please report it to datatable-help.

4.4 cbind(DT,DF) returns a strange format e.g. ’Integer,5’

This occurs prior to v1.6.5, for rbind(DT,DF) too. Please upgrade to v1.6.7 or later.

4.5 cannot change value of locked binding for ’.SD’

.SD is locked by design. See ?data.table. If you’d like to manipulate .SD before using it, or
returning it, and don’t wish to modify DT using :=, then take a copy first (see ?copy); e.g.,

> DT = data.table(a=rep(1:3,1:3),b=1:6,c=7:12)

> DT
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a b c

1: 1 1 7

2: 2 2 8

3: 2 3 9

4: 3 4 10

5: 3 5 11

6: 3 6 12

> DT[,{ mySD = copy(.SD)

+ mySD[1,b:=99L]

+ mySD },

+ by=a]

a b c

1: 1 99 7

2: 2 99 8

3: 2 3 9

4: 3 99 10

5: 3 5 11

6: 3 6 12

4.6 cannot change value of locked binding for ’.N’

Please upgrade to v1.8.1 or later. From this version, if .N is returned by j it is renamed to N to
avoid any abiguity in any subsequent grouping between the .N special variable and a column called
".N". The old behaviour can be reproduced by forcing .N to be called .N, like this :

> DT = data.table(a=c(1,1,2,2,2),b=c(1,2,2,2,1))

> DT

a b

1: 1 1

2: 1 2

3: 2 2

4: 2 2

5: 2 1

> DT[,list(.N=.N),list(a,b)] # show intermediate result for exposition

a b .N

1: 1 1 1

2: 1 2 1

3: 2 2 2

4: 2 1 1

> cat(try(

+ DT[,list(.N=.N),by=list(a,b)][,unique(.N),by=a] # compound query more typical

+ ,silent=TRUE))

Error in `[.data.table`(DT[, list(.N = .N), by = list(a, b)], , unique(.N), :

The column '.N' can't be grouped because it conflicts with the special .N variable. Try setnames(DT,'.N','N') first.

If you are already running v1.8.1 or later then the error message is now more helpful than the
cannot change value of locked binding error. As you can see above, since this vignette was
produced using v1.8.1 or later. The more natural syntax now works :

> if (packageVersion("data.table") >= "1.8.1") {

+ DT[,.N,by=list(a,b)][,unique(N),by=a]

+ }
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a V1

1: 1 1

2: 2 2

3: 2 1

5 Warning messages

5.1 The following object(s) are masked from ’package:base’: cbind, rbind

This warning was present in v1.6.5 and v.1.6.6 only, when loading the package. The motivation
was to allow cbind(DT,DF) to work, but as it transpired, broke (full) compatibility with package
IRanges. Please upgrade to v1.6.7 or later.

5.2 Coerced numeric RHS to integer to match the column’s type

Hopefully, this is self explanatory. The full message is :

Coerced numeric RHS to integer to match the column’s type; may have truncated

precision. Either change the column to numeric first by creating a new numeric

vector length 5 (nrows of entire table) yourself and assigning that (i.e.

’replace’ column), or coerce RHS to integer yourself (e.g. 1L or as.integer)

to make your intent clear (and for speed). Or, set the column type correctly

up front when you create the table and stick to it, please.

To generate it, try :

> DT = data.table(a=1:5,b=1:5)

> suppressWarnings(

+ DT[2,b:=6] # works (slower) with warning

+ )

a b

1: 1 1

2: 2 6

3: 3 3

4: 4 4

5: 5 5

> class(6) # numeric not integer

[1] "numeric"

> DT[2,b:=7L] # works (faster) without warning

a b

1: 1 1

2: 2 7

3: 3 3

4: 4 4

5: 5 5

> class(7L) # L makes it an integer

[1] "integer"

> DT[,b:=rnorm(5)] # 'replace' integer column with a numeric column
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a b

1: 1 0.1589613

2: 2 0.8143610

3: 3 0.2637887

4: 4 -1.6940560

5: 5 -0.7712040

6 General questions about the package

6.1 v1.3 appears to be missing from the CRAN archive?

That is correct. v1.3 was available on R-Forge only. There were several large changes internally
and these took some time to test in development.

6.2 Is data.table compatible with S-plus?

Not currently.

� A few core parts of the package are written in C and use internal R functions and R structures.

� The package uses lexical scoping which is one of the differences between R and S-plus explained
by R FAQ 3.3.1.

6.3 Is it available for Linux, Mac and Windows?

Yes, for both 32-bit and 64-bit on all platforms. Thanks to CRAN and R-Forge. There are no
special or OS-specific libraries used.

6.4 I think it’s great. What can I do?

Please send suggestions, bug reports and enhancement requests to datatable-help. This helps make
the package better. The list is public and archived.

Please do vote for the package on Crantastic. This helps encourage the developers, and helps
other R users find the package. If you have time to write a comment too, that can help others in
the community. Just simply clicking that you use the package, though, is much appreciated.

You can join the project and change the code and/or documentation yourself.

6.5 I think it’s not great. How do I warn others about my experience?

Please put your vote and comments on Crantastic. Please make it constructive so we have a chance
to improve.

6.6 I have a question. I know the r-help posting guide tells me to contact
the maintainer (not r-help), but is there a larger group of people I
can ask?

Yes, there are two options. You can post to datatable-help. It’s like r-help, but just for this
package. Or the data.table tag on Stack Overflow. Feel free to answer questions in those places,
too.

6.7 Where are the datatable-help archives?

The homepage contains links to the archives in several formats.
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6.8 I’d prefer not to contact datatable-help, can I mail just one or two
people privately?

Sure. You’re more likely to get a faster answer from datatable-help or Stack Overflow, though.
Asking publicly in those places helps build the knowledge base.

6.9 I have created a package that depends on data.table. How do I
ensure my package is data.table-aware so that inheritance from
data.frame works?

You don’t need to do anything special. Just include data.table in either the Imports or Depends
field of your package’s DESCRIPTION file.

6.10 Why is this FAQ in pdf format? Can it moved to a website?

This FAQ (and the intro and timing documents) are vignettes written using Sweave. The benefits
of Sweave include the following:

� We include R code in the vignettes. This code is actually run when the file is created, not
copy and pasted.

� This document is reproducible. Grab the .Rnw and you can run it yourself.

� CRAN checks the package (including running vignettes) every night on Linux, Mac and
Windows, both 32bit and 64bit. Results are posted to http://cran.r-project.org/web/

checks/check_results_data.table.html. Included there are results from r-devel; i.e., not
yet released R. That serves as a very useful early warning system for any potential future
issues as R itself develops.

� This file is bound into each version of the package. The package is not accepted on CRAN
unless this file passes checks. Each version of the package will have its own FAQ file which
will be relevant for that version. Contrast this to a single website, which can be ambiguous
if the answer depends on the version.

� You can open it offline at your R prompt using vignette().

� You can extract the code from the document and play with it using
edit(vignette("datatable-faq")) or edit(vignette("datatable-timings")).

� It prints out easily.

� It’s quicker and easier for us to write and maintain the FAQ in .Rnw form.

Having said all that, a wiki format may be quicker and easier for users to contribute documentation
and examples. Therefore a wiki has now been created; see link on the homepage.
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